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ABSTRACT 

FUNCTIONAL CHARACTERIZATION OF MITOGEN-DEPENDENT AND SELF­
PERPETUATING NB2 LYMPHOMA CELL LINES 

Charlotte A. Cockrell, Bachelor of Science Mary Washington College 

A thesis submitted in partial fulfillment of the requirements for the degree of 
Master of Science at Virginia Commonwealth University. 

Virginia Commonwealth University, 2000 

Raphael J. Witorsch, Ph.D., Professor, Department of Physiology 

This investigation involved the functional characterization of four Nb2 sub lines (Nb2-U-

17, Nb2-l l ,  SFJCD l ,  and D5) for their mitogenic and apoptotic responses to DEX ± PRL 

treatment. Many protein factors have been implicated to be crucial in controlling the 

apoptotic and mitogenic pathways. In conjunction with functional studies, an 

immunocytochemical investigation of four protein signals (NFKB, IKBa, STAT 5b, and 

the GR) was undertaken in an attempt to establish a relationship between the functional 

responsiveness of a given cell line and the concentration of a particular protein marker. 

Comparison of the functional data obtained for the four lines reveals marked differences 

in behavior in response to DEX ± PRL. The Nb2-l l and U-17 sublines were dependent 

upon prolactin for proliferation and were sensitive to DEX induced cytolysis/apoptosis in 

the absence of PRL. Co-incubation of DEX and PRL resulted in both an inhibition of 
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apoptosis by PRL and an inhibition of mitogenesis by DEX. On the other hand, the 

SFJCDI (SF) and 05 sublines proliferated in the absence of prolactin and were resistant. 

to the anti-mitogenic and cytolytic/apoptotic effects ofDEX. The differences in 

functional behavior between the mitogen-dependent and -independent cell lines could not 

be correlated with the expression of a particular protein marker. 
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1.1 Background 

CHAPTER ONE 

INTRODUCTION 

Apoptosis is a natural process whereby a single cell or groups of cells are programmed to 

commit suicide in an orderly fashion; for this reason, apoptosis is interchangeably 

referred to as programmed-cell death (Donner, et al. 1999) . Apoptosis occurs during 

many physiological processes such as, embryogenesis, t-cell tolerance, metamorphosis, 

and adjustment of cell number including tumor cell and infected cell elimination (Lang, 

et al. 1999). In addition to the beneficial and crucial physiological processes that rely on 

apoptosis, there are a multitude of environmental and internal factors that result in the 

stimulation of unnecessary apoptosis, which can be harmful to an organism (Lang, et al. 

1999). Some of these factors include, bacterial toxins, radiation, gross increase in 

extracellular osmolarity, oxidative stress, c-myc over-expression, growth factor depletion, 

stimulation of certain membrane receptors (TNF and CD-95/Fas/ AP0-1 receptor), 

ischemia, and glucocoticoid hormones (GCH) (Cifone, et al. 1999; Lang, et al. 1999). 

Cells are programmed to die when the delicate balance between survival factors and 

death factors is upset (Mann, et al. 2000). Excessive apoptosis can cause 

neurodegeneration and immunodeficiency, while inadequate apoptosis may lead to tumor 
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development or excessive functions such as, enhanced hormone production or 

autoimmune disease (Lang, et a!. 1999). 

2 

Apoptosis is an energy-dependent process (Kerr, et a!. 1972; Wyllie, et a!. 1980; Kerr and 

Searle 1980; Whitfield, et a!. 1968) that is easily recognizable and distinguishable from 

necrosis by certain hallmark events. The process of apoptosis is initiated by caspase 

activation, thought to be the central mediator of the apoptotic phenotype (Mann, et a!. 

2000). Morphologically, apoptosis is recognizable by the appearance of cellular 

shrinkage thought to be induced by the loss of intracellular potassium ions (Bortner, et a!. 

1997; Bortner, et a!. 1997). In addition, nuclear condensation and translocation of 

phosphatidylserine residues to the extracellular surface occurs, which aids in recognition 

of the dying cell by local cells and the immune system (Mann, et al.2000; Lang, et a!. 

1999). Later in the onset of apoptosis, the chromatin of the cell condenses and the DNA 

is cleaved by endonucleases (Wyllie, et a!. 1980; Mann, et a!. 2000). Ultimately, the cell 

is broken down into small particles called apoptotic bodies (Lang, et a!. 1999), which are 

quickly engulfed by resident tissue cells and digested within a few hours by 

phagolysosomes (Searle, et a!. 1982). Throughout the process of apoptotic cell break 

down the cell membrane is never breached, thus avoiding intracellular protein release and 

consequent inflammation (Lang, et a!. 1999). 

In contrast to apoptosis, necrosis is a less organized cell death process that ultimately 

results in an immune response and inflammation of the surrounding tissues (Wyllie, et a!. 
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1980). Necrosis can be caused by a number of factors including physical damage, 

hyperthermia, inhibition of oxidative phosphorylation, glycolysis or the citric acid cycle, 

autolysis, hypoxia, complement, and a variety of toxins (Lang, et a!. 1999; Thompson 

1998). Unlike apoptosis, which usually affects single cells or scattered cells, necrosis 

usually affects groups of contiguous cells (Wyllie, et a!. 1980), or tracts of tissue (as in an 

infarct) (Searle, et a!. 1982). Affected cells dilate, their mitochondria swell, other 

organelles dissolve, the plasma membrane ruptures, the nucleus dilates, and the 

chromatin disperses (Wyllie, et al. 1980; Searle, et al. 1982). When the membrane bursts 

intracellular proteins leak out into the surrounding extracellular fluid, activating an 

immune response, which results in inflammation and tissue damage (Lang, et al. 1999). 

Specialized phagocytic cells (Wyllie, et al. 1980) eventually ingest the debris produced 

from the rupture of a necrotic cell, but dead cells may persist in a histologically 

recognizable form for days to weeks (Searle, et al. 1982). 

The focus of our laboratory has been on glucocorticoid-induced apoptosis in the rat Nb2 

lymphoma cell line. Glucocorticoids (GCs) have been proven to activate apoptosis in 

thymocytes and neoplastic lymphocytes (Wyllie 1980; Cohen and Duke 1984; Bansal, et 

al. 1991; Baxter, et al. 1971 ), including Nb2 cells (Fletcher-Chiappini, et al. 1993), 

making GCs an effective treatment for lymphoid cancers (Feinman, et al. 1999). Cifone 

et al. ( 1999) have recently proposed a pathway through which GC-induced apoptosis 

occurs. The first step involved is the binding of hormone or in this case dexamethasone 

(DEX), a synthetic glucocoticoid, to the glucocorticoid receptor (GR). This leads to 
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phosphoinositol-phospholipase C (PI-PLC) activation, which consequently initiates 

diacylglycerol (DAG) release. DAG release leads to acidic sphingomyelinase (aSMase) 

activation, which cleaves ceramide thereby releasing it to activate the caspase cascade. 

Activation of the caspase cascade that leads to transcription and protein synthesis and 

ultimately results in apoptosis (Cifone, et al. 1999). Other investigators have proposed 

that transcription is the initial event leading to the apoptosis cascade (Cohen and Duke 

1984; Nicholson, et al. 1978; Helmberg, et al. 1995), however apoptosis induced by 

exogenous ceramide is prevented by inhibiting mRNA and protein synthesis, suggesting 

that transcription is a downstream event (Cifone, et al. 1999). 

4 

It is apparent that one or more regulatory pathways must exist to keep the deadly action 

of glucocorticoids to some cell types in check. Jamieson et al. (2000) were able to 

demonstrate the existence of a regulatory crosstalk pathway between the GR and the T­

cell receptor (TCR), and were able to show that the GR inhibits TCR/CD3 activation­

induced death via MEK (mitogen-activated protein kinase kinase) in primary splenic T 

cells (Jamieson and Yamamoto 2000). Furthermore, other investigators have shown that 

the GR inhibits TCR-induced apoptosis via repression ofFasL transcription (Yang, et 

al.l995). In vivo GC levels are regulated in response to diurnal cycling and stress levels 

(Jamieson and Yamamoto 2000). It is possible to speculate that this GR/TCR crosstalk 

pathway may also be responsible for preventing GC-induced apoptosis of T cells 

combating inflammation or infection (Jamieson and Yamamoto 2000) making it a 

reciprocal pathway. Jamieson's group of investigators also found that Ras signaling 
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during TCR signal transduction in a thymoma cell line prevented GC-induced apoptosis 

(Jamieson and Yamamoto 2000). This implies that the same crosstalk pathway may also 

exist in thymocytes (Jamieson and Yamamoto 2000). 

The Nb2 lymphoma cell line used by our laboratory is a pre-T cell (thymocyte) 

suspension culture derived from the lymph node of an estrogen-treated male Noble (Nb) 

rat (Noble, et a!. 1985; Gout, et a!. 1980; Fleming, et a!. 1982). Although these cells were 

taken from the lymph node, they are not mature B or T lymphocytes (Fleming, et a!. 

1982). The surface antigens expressed or not expressed by Nb2 cells reveal that these 

cells are not B cells, mainly due to the lack of immunoglobulin expression (Fleming, et 

a!. 1982). On the other hand, it is their expression of both W3/25-HLK (CD4) and OX8-

HL (CD8) antigens, which are expressed on different subsets of mature T cells, that 

indicate that they are too immature to be defined as T cells (Fleming, et a!. 1982). In fact, 

their surface antigens suggest that the Nb2 lymphoma cell line arose from a thymocyte at 

some intermediate stage of development that is not clearly defined (Fleming, et a!. 1982). 

The first experimental use of the Nb2 cell line was as a bioassay for lactogenic hormones 

(e.g. human growth hormone and human PRL hormone) (Tanaka, et a!. 1980). Nb2 cells 

are profoundly sensitive to lactogenic hormones from a variety of species and can be used 

to quantitate the concentration of a given hormone (Tanaka, et a!. 1980). 

Our investigation involved the use of the following four unique Nb2 sub lines: Nb2-U-17, 

Nb2-11, SFJCDl, and D5. The Nb2-U-17 (wild-type) and Nb2-11 lines are critically 
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dependent upon prolactin (PRL) or other lactogen (e.g. human growth hormone or 

placental lactogen) for proliferation (Gout, et a!. 1980; Gout, et a!. 1994), and the 

SFJCDI (SF) and D5 cultures proliferate in the absence ofPRL or other mitogen (Gout, 

et a!. 1994). The lactogen-independent lines were developed by the withdrawal of 

lactogenic hormone from PRL-dependent cultures, and subsequent propagation of the 

surviving cells in media devoid of ! acto gens (Gout 1987). The autonomous nature of the 

SF cell prompted an investigation into whether these cells were producing their own 

PRL-like substance. Assays testing for the presence of autonomous mitogens 

(endogenous lactogenic hormones) or growth factors produced by these cells were 

negative (Witorsch, et a!. 1993; Gout 1987). 

Our laboratory has investigated the functional behavior of both PRL-dependent and­

independent Nb2 lines in response to DEX ± PRL treatment. We have observed the 

following: I) DEX initiates apoptosis in a concentration dependent manner via the GR in 

the PRL-dependent Nb2 clone 2 line (Fletcher-Chiappini, et a!. 1993), 2) At very low 

concentrations ( lng/mL) PRL effectively inhibits DEX-induced apoptosis in PRL­

dependent Nb2lines (Fletcher-Chiappini, et a!. 1993), 3) IOOnM DEX is anti-mitogenic 

to the PRL-independent SFJCD I (SF) (Witorsch, Day, et a!. 1993), and 4) Extracellular 

Ca2+ is not required for PRL or DEX action (LaVoie and Witorsch 1995). In addition to 

the anti-apoptotic action ofPRL, a reciprocal effect could be demonstrated whereby DEX 

was able to prevent PRL-induced mitogenesis ofNb2 cells (Fletcher-Chiappini, et a!. 

1993). Due to the divergent nature of the signal transduction pathways leading to 
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mitogenesis and apoptosis, it has been suggested that the opposite inhibitory actions 

caused by DEX on mitogenesis and PRL on apoptosis involve a complex interplay 

between the post-receptor mechanisms of the PRL and glucocoticoid receptors (Fletcher­

Chiappini, et a!. 1993). 

The immunocytochemical (ICC) approach has been employed by our laboratory to study 

the signaling associated with apoptosis control in Nb2 lymphoma cells. Using ICC we 

have demonstrated the existence of the following protein markers in Nb2 cells: NFKB, 

IKBa., STAT Sb, GR, Bcl-2, Bax, Fas, FasL, and p53 (Gaunzon 1998; Badarinath 1999). 

With the exception of p53, the specificity of immunostaining the preceding antibodies 

has been validated by immunoabsorption (Gaunzon 1998; Bardarinath 1999). 

Preliminary studies were unable to establish the existence of a dynamic relationship 

between the level of expression of a given signal before and after DEX treatment 

(Gaunzon 1998; Badarinath 1999). 

More recently our laboratory has focused on the following four protein markers: NFKb, 

lKBa., STAT Sb, and GR. The first marker mentioned, NFKB or nuclear factor kappa B, 

is the most frequently occurring heterodimeric complex (p65/p50) of the NFKB family 

found in the cell. However, there are actually five proteins in the NFKB family including, 

NFKB 1 (pSO/p 1 00), NFKb2 (p522/p 1 00), Re!A (p65), e-Re! and Re!B (De Bosscher, et 

a!. 2000). In the inactivated state, NFKB is bound to an inhibitor, IKBa., in the cytoplasm 

of the cell (HeUmann, et a!. 1999). Upon activation NFKB is released from IKBa. and 
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NFKB dimers translocate to the nucleus where they bind to various Kb DNA binding 

sites and regulate the transcription of certain genes (Hettmann, et a!. 1999). NFKB can 

promote apoptosis or cell survival depending upon the cell type and context (F einman, et 

a!. 1999). However, most studies indicate that the Rel/NFKB family of transcription 

factors play an important role in the protection of cells from apoptosis either by 

constitutive expression ofNFKB or by its induction (Sonenshein 1997). In a study 

performed by Ivanov and Nikolic-Zugic (1998) on double positive thymocytes (as are 

Nb2 cells), GCs were shown to induce a moderate upregulation ofRelA-p50 (NFKB) 

relatively late in the apoptosis cascade after caspase-dependent degradation of several 

nuclear proteins. This up-regulation ofNFKB was associated with the activation of the 

proteosome and the consequent degradation ofiKBa (Ivanov and Nikolic-Zugic 1998). 

In addition, it has been shown by another group of investigators that after NFKB has 

translocated to the nucleus, the GR interferes with the transactivating domain of the p65 

subunit thereby repressing transcription of p65 mediated gene products (D e Bosscher, et 

a!. 2000). Therefore, although NFKb is upregulated by glucocorticoids late during the 

apoptosis cascade, subsequent downregulation in the nucleus ultimately results in a 

repression ofKB gene transcription and the protective effects of the gene products. This 

evidence is supported by the findings of Sen and Sen. who found that following the 

injection of mice with GCs there was a drop in NFKB DNA-binding activity in immature 

CD 8+/CD4+ lymphocytes preceding apoptosis (Sonenshein 1997). These investigations 

suggest a possible crucial role for NFKb in determining cell survival. 
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IKBa or inhibitor kappa B alpha, mentioned briefly above, is bound to inactivated NFKB 

in the cytoplasm of the cell (Hettmann, et al. 1999), functioning as an inhibitor by 

sequestering NFKB in the cytoplasm. IKBa contains six copies of a structural motif 

called an ankryrin repeat, which is necessary for the interaction with NFKB (Whiteside 

and Israel 1997). Ankyrin repeats sequester NFKB in the cytoplasm by masking the 

nuclear localization sequence situated in the C-terminal region of the Rei homology 

domain (Beg, et al.I992; Ganchi, et al. 1992). Additional structural attributes include an 

N terminal pair of serine residues and a C-terminal region rich in proline, glutamate, 

aspartate, serine and threonine residues (PEST domain) implicated in regulating the 

stability ofiKBa, as well as playing a role in the ability ofiKba to inhibit DNA-binding 

by Rel/NFKB complexes (Whiteside and Israel 1997). When the cell is activated by any 

number of apoptotic stimuli, IKBa is phosphorylated and subsequently degraded resulting 

in the release ofNFKB (Hettmann, et al. 1999). Upon release from IKBa, NFKB dimers 

translocate to the nucleus where they bind to various KB promoter sites and regulate the 

transcription of genes that have protective effects on the cell (Hettmann, et al. 1999; 

Sonenshein 1997). After degradation ofiKBa it is then resynthesized in an NFKB­

dependent manner (Whiteside and Israel 1997). In the case of glucocorticoid treatment, 

the induced synthesis ofiKBa by NFKB leads to translocation ofiKBa to the nucleus 

where it can inhibit NFKB by binding to its target sites (Arenzana-Seisdedos, et al. 1995). 

Furthermore, translocation ofNFKB to the nucleus is inhibited by mutating IKBa to a 
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super-repressor form (Wang, et a!. 1996). Translocation to the nucleus can also be 

prevented by mutations to the serine-specific kinases that phosphorylate IKba. or to the 

proteosome responsible for degradation of IKBa. (Whiteside and Israel 1997; Brown, et 

a!. 1995). These investigations suggest that the integrity and concentration of the IKBa. 

protein play a critical role in determining cell survival, and that IKBa. is a mobile protein 

capable of inhibiting NFKB in both the cytoplasm and the nucleus. 

Signal Transducer and Activator of Transcription 5B or STAT 5B may also play a role in 

controlling apoptosis. The JAK/ST AT pathway is activated as a result of PRL binding to 

the PRL receptor and it is implicated in transducing the mitogenic signal to the nucleus of 

the cell (Rui, et a!. I 998). JAKs are constitutively associated with the cytoplasmic 

domain of cytokine receptors (Starr, et a!. 1999). Binding of ligand to its receptor 

induces dimerization of the receptor chains, bringing together two JAK kinases that are 

activated by transphosphorylation (Starr, et a!. 1999). In the case of PRL binding, J ak2 is 

activated. Jak2 in tum phosphorylates STAT SA, 5B, 1, and 3 in addition to the serine 

kinases ERK 1 and 2 (Starr, et a!. 1999; Rui, et a!. 1998). Upon activation ST ATs 

dimerize and migrate to the nucleus where they activate the transcription of genes that 

mediate the cytokine-induced biological response (Starr, et a!. 1999). It may be 

postulated then that over-expression of ST A Ts, particularly STAT 5B, in Nb2 cells may 

afford protection from apoptosis. In support of this hypothesis it has been documented 

that STAT 5 represses the GC response (Pfiztner, et a!. 1998). Therefore, an over-
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expressed STAT 5B protein in Nb2 lymphoma cells may afford protection from GC­

induced apoptosis. 

II 

A fourth protein that may play a role in producing either glucocorticoid resistance or 

sensitivity is the GR itself. It has been postulated that mutation or downregulation of the 

GR may be the cause of glucocorticoid hormone insensitivity. In 1988 Rosewicz et al. 

( 1988) found that downregulation of the GR could be found for up to 72 hours after GC 

treatment (Rosewicz, et al. 1988). However, they also found that the synthetic 

glucocoticoid dexamethasone (DEX) had no effect on the level ofGR expressed, and 

studies performed by Oldenburg et al. in 1997 support this evidence. In addition, 

Oldenburg and his group found that DEX-insensitive thymocytes possessed fully 

functional GRs, and they found that the molecular weight and abundance of the receptor 

does not change after DEX treament, indicating that the GR is neither downregulated nor 

mutated (Oldenburg, et al. 1997), which is consistent with earlier findings in our 

laboratory (Witorsch, et al. 1993). Oldenburg's findings suggest that the GR is not 

responsible for the apoptosis-resistant phenotype, and that there must be other factors that 

confer apoptosis resistance or sensitivity. 

The over- or under-expression of one or more of these proteins could have an obvious 

effect on apoptosis regulation. The initial studies by Guanzon (1998) and Badarinath 

( 1999) failed to demonstrate any acute changes between a given signal and DEX 

treatment. More recently we have attempted to correlate the functionality ofNb2 cells 
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with the level of expression of these markers. 26 sub lines were generated from a single 

Nb2-11 cell using a limiting dilution technique. Some of these sub lines demonstrated 

distinct levels of sensitivity to DEX-induced cytolysis/apoptosis as measured by trypan 

blue exclusion and TdT-mediated dUTP-biotin nick end labeling (TUNEL) (Patel 1999; 

Rebano 1999). In addition, the degree of sensitivity of a given sub line to DEX treatment 

was statistically correlated to the percentage of cells immunostained for NFKB, IKBa., 

STAT 5b, and the GR (Patel 1999; Rebano 1999). This suggested that all of the markers 

were localized within a single population of cells, which was confirmed by co­

localization of the four markers discussed using a modification of Immunocytochemistry 

methodology (Rebano 1999). 

1.2 Objective 

To date, immunocytochemistry methodology has provided little insight into the 

mechanisms involved in control of apoptosis and mitogenesis in Nb2 lymphoma cells. 

Through the use ofiCC we have been unable to observe changes in the expression of 

signals associated with physiologic manipulation of cells (e.g. treatment with DEX or 

removal of mitogen) (Gaunzon 1998; Badarinath 1999). The limiting dilution approach 

whereby sub lines were generated for the characterization of signaling in apoptosis control 

was found to be of limited value for two main reasons. First, the generation of the 

sublines through limiting dilution is not a quantitative process because there is no way to 

confirm that a given cell line arises from only one cell. Therefore, the homogeneity of a 

given subline is assumed. Second, the functional variation between sublines was narrow 



www.manaraa.com

making differences difficult to correlate statistically. On the other hand, the results of 

this approach suggested that a correlation did exist between functional behavior and the 

existence of certain markers. 

13 

Our current strategy was to determine if differences in signal expression as measured by 

ICC could be detected in sublines of Nb2 cells that exhibit marked functional differences. 

The Nb2- l l and U-17 (wild-type) lines are dependent upon PRL for mitogenesis, and it 

has been documented that the former undergoes apoptosis in response to nanomolar 

concentrations of DEX (Fletcher-Chiappini 1993). In contrast, the SFJCDl (SF) and D5 

lines are PRL-independent with regard to mitogenesis and the former has been shown to 

be resistant to DEX-induced apoptosis. If the signals of interest are involved in the 

apoptosis pathway, than differences in their level of expression may be demonstrable by 

ICC. 

The purpose of this thesis was to functionally characterize the hormonal control of 

mitogenesis and apoptosis in the SF, D5, Nb2- l l ,  and U-17 cell lines. Functionality was 

examined by determining the cytolytic/apoptotic and mitogenic responses to DEX ± PRL 

treatment. ICC was used to determine if we could detect differences in immunostaining 

of the four signals of primary interest (NFKB, lKBa, STAT 5b, and GR) in the four cell 

lines. 

In addition to the four lines described above, we have generated two additional 

phenotypic variants in our laboratory. One line (named LTI for long-term culture) was 
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generated by the prolonged incubation ofNb2-l l cells with subculturing (dilutions of 

I :9 or I: 19 every two to three days) for an extended period of time (one year or more). 

This resulted in a phenotype that was less sensitive to DEX-induced cytolysis and had the 

capacity to self-proliferate. A second subline (named PI for prolactin-independent) was 

generated by subculturing the Nb2-l l in media devoid of mitogen (fetal bovine serum). 

The PI cells appeared to be mitogen-independent and also had a decreased sensitivity to 

DEX-induced cytolysis (Gannon 2000, unpublished results). 
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CHAPTER TWO 

MATERIALS AND METHODS 

2.1 Maintenance of Nb2 Lymphoma Cells 

Four Nb2 lymphoma cell lines were obtained from Dr. Peter Gout of the Cancer Control 

Agency in Vancouver, British Columbia in February of 2000. Mitogen dependent cell 

lines (Nb2-U-17 and Nb2-l l )  were maintained in Fischer's Maintenance Medium 

(FMM), containing chemically defined Fischer's Medium (Sigma), 50U/mL penicillin, 

50!-lg/mL streptomycin, O. l mM �-mercaptoethanol, 0.075% sodium bicarbonate, 10% 

horse serum (HS) and I 0% fetal calf serum (FCS). Mitogen independent cell lines 

(SFJCDI and D5) were maintained in Fisher's Stationary Medium (FSM), which is 

equivalent to FMM with the exception that it contains no FCS. Fischer's Medium and�­

mercaptoethanol were purchased from the Sigma Chemical Company, and all other 

media components were purchased from Gibco BRLI Life Technologies, Inc. 

All cell lines were cultured in ventilated polystyrene 9ulture flasks in a humidified 

incubator that was maintained at 37°C and 5% C02/95% room air. Cell culture 

concentration and viability were determined by a cell count using a hemacytometer and 

Trypan Blue (Gibco BRL, Life Technologies, and Inc.) exclusion (0.1 mL cells+ 0.9mL 

15 
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trypan blue). Cell subculturing and assays were performed in a sterile environment and 

cell cultures were not diluted to less than 0.05 X I 06 cells/mL when subcultured. 

2.2 Freezing and Resurrecting Cells 

16 

Cells were routinely frozen every couple of weeks for later resurrection as needed. First, 

an aliquot of cells was centrifuged at I 000 rpm for five minutes. The cells were washed 

one time with FM, which involved resuspension in FM, centrifugation at I 000 rpm for 

five minutes, and aspiration of the supernatant. After the wash step, the cells were 

resuspended in I mL of freezing medium, transferred to 2 mL biofreeze vials (Coming 

Costar Corp.), and finally stored at -70°C. The freezing medium composition differed 

according to whether the cell line was mitogen-dependent or -independent. For mitogen­

dependent sub lines (U-17 and Nb2- ll) the freezing medium consisted of FMM/8% 

DMSO (Sigma). The freezing solution for mitogen independent sublines (SFJCDI and 

D5) consisted of FSM/8% DMSO. 

Cells to be resurrected were first thawed and the contents of the biofreeze vial were 

placed in a centrifuge tube of warmed pre-gassed (5% C02) FMM or FSM depending 

upon the cell line. The cells were then placed in a humidified, 37°C incubator for ten 

minutes with the cap loosened to allow the DMSO to escape from the cells. The cells 

were then centrifuged at I 000 rpm for five minutes, washed with FM and resuspended in 

warmed, pre-gassed FMM or FSM. Cell viability and concentration were determined by 
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Trypan Blue exclusion. The cells were cultured for at least a week post-resurrection 

before using them for experiments. 

2.3 Cell Fixation and Spotting 

17 

The procedure for fixing and spotting cells was identical for all cell cycle phases and/or 

cell treatments. First, an aliquot of cells was fixed with an equal volume of fixative 

(0.01M PBS/7.4% formaldehyde prepared by diluting stock formaldehyde, 37% solution, 

obtained from J.T. Baker Chemicals with 0.01M PBS at 7.0 pH) at room temperature and 

allowed to stand for ten minutes. The fixed cells were then centrifuged for five minutes 

at 1000 rpm. The supernatant was removed and the cells were resuspended in enough 

0.01M PBS to give a cell concentration of3.0-3.5 X 106 cells/mL. Approximately 20).lL 

of fixed cells were spotted into etched circles of approximately 5mm in diameter on 

Fischer Superfrost/Plus slides. The spotted slides were then covered and allowed to dry 

at room temperature overnight before use in experiments. 

2.4 Cytolytic Assay 

The cytolytic assay is a four well assay used to test the cells responsiveness to DEX ± 

ovine prolactin ( oPRL ). An aliquot of cells were centrifuged at 1000 rpm for five 

minutes, washed once with FM and finally resuspended in chemically defined serum-free 

synthetic medium (SYN). SYN consists of 0.1 mM �-mercaptoethanol, 50U/mL 

penicillin, 50).lg/mL streptomycin 0.15% (wt/vol.), bovine serum albumin (0.15%), 4 

).lg/mL linoleic acid, I mM sodium pyruvate, 12).lg/mL transferrin, 15ng/mL selenium, 1 X 
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vitamins (diluted from 100X stock), 0.33X amino acids (diluted from stock 100X), 

0.5mM CaCiz and hepes dissolved in FM. The cells were then counted in triplicate using 

a hemacytometer and Trypan Blue exclusion, and diluted with SYN to obtain a 

concentration of 0.56 X 106 cells/mL. 

Four wells were set up on a 24 well plate as follows: I) 2.5 J..ll DMSO, 0.1mL SYN and 

0.9 mL cells (control), 2) 1.25 J..lL DMSO, 1.25 J..lL DEX, 0.1 mL SYN and 0.9mL cells 

(DEX), 3) 1.25 J..lL DMSO, 1.25 J..lL DEX, 0.1 mL oPRL (DEX + PRL), and 0.9 mL cells, 

4) 2.5 J..lL DMSO, 0.1mL oPRL and 0.9mL cells (PRL). The assay was incubated at 37°C 

and 5% C02 for 24 hours. After incubation each well was counted in triplicate using a 

hemacytometer and Trypan Blue exclusion to determine the cell viability (percent living 

and dead) and concentration (number of cells/mL). 

2.5 Mitogenic Assay 

The objective of the mitogenic assay was to determine the proliferation of a given cell 

line when exposed to oPRL ± DEX over a 72-hour period. Prior to cell treatment the 

cells were "cooled down" or arrested in G 1 phase of the cell cycle by incubating the cells 

for 24 hours in FSM/1% FCS (Buckley, et a!., 1996; Gilks, et a!., 1995). This was done 

by first centrifuging an aliquot of cells at 1000 rpm for five minutes, washing two times 

with FM and finally resuspending in FSM/1 %FCS. The cells were then counted one time 

using Trypan Blue exclusion to determine concentration and viability, and diluted to 0.50 

X 106 cells/mL. The diluted cells were incubated in a humidified, 37°C and 5.0% C02 
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incubator for 24 hours. The same protocol was followed for the mitogen -independent 

cell lines with the exception that they were resuspended and diluted with FSM. 

However, these cells were not expected to "cool down" because they are mitogen 

independent, but they were subjected to the same procedure to maintain experimental 

consistency. 

After incubating the cells for 24 hours an aliquot of the "cooled down" cells was 

removed, centrifuged, washed two times with FM and resuspended in SYN. The cells 

were then counted in triplicate using a hemacytometer and Trypan Blue exclusion, and 

diluted to a concentration of 0.11 X 106 with SYN. 

The four well set up for the assay was identical to that described for the cytolytic assay 

above. The cells were then incubated for 72 hours in a humidified, 37°C and 5.0% C02 

incubator. At end of the incubation period each well was counted in triplicate using a 

hemacytometer and Trypan Blue exclusion. 

2.6 Immunocytochemistry (ICC) and Immunoabsorption 

Immunocytochemical assays were performed to test for the presence and abundance of 

' 

four protein antigens presumably associated with hormonal control of apoptosis and 

mitogenesis. Working stock solutions of each polyclonal rabbit lgG antibody were 

prepared from concentrated antibody solutions obtained from Santa Cruz Biotechnology. 

Anti-GR (P-20) and anti-NFKB p65 (C-20) were diluted from a concentration 200 jlg/ml 
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to a working concentration of 4j.lg/ml with O.OIM PBS/0.1% BSA, and anti-IKBa (C-21) 

and anti-STAT 5B (C-17) were diluted from I OOj.lg/mL to 2j.lg/mL with PBS/BSA 

(Sigma). 

ICCs were performed using the Vectastain kit obtained from Vector Laboratories, which 

contained blocking serum, secondary biotinylated antibody and tertiary ABC antibody. 

Solutions in the Vectastain kit were prepared according to the kit instructions, and further 

modifications as described below. After each treatment, the slides were incubated in a 

humidified chamber at room temperature. Between each treatment the slides were 

washed with !OmL of O.OIM PBS and immersed in a Coplin jar containing O.OIM PBS to 

maintain hydration. 

First, slides that had been spotted with the four Nb2 sublines (in log phase) were hydrated 

for ten minutes in O.OIM PBS. Cytopore (Trevigen) was then added to each spot to 

permeabilize the cells, and the slides were incubated for thirty minutes. Second, blocking 

serum was added from the Vectastain kit to minimize non-specific staining, and the slides 

were incubated for twenty minutes. Next, the primary working antibody solutions 

(working stock solutions prepared above) were added to the spotted cells and a negative 

control slide was treated with 0.0 I M PBS/0.1% BSA (Sigma). The slides were then 

incubated for three hours. Next, a secondary biotinylated antibody (Vectastain) was 

added at a dil�ted concentration (diluted I :7 with 0.0 I M PBS) to each spot, and 

incubated for thirty minutes. Subsequently, tertiary ABC antibody was added after being 
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diluted 1:4 with 0.01M PBS, and incubated for thirty minutes. The slides were then 

placed in a cop lin jar for eight minutes containing 12.5 mg Diaminobenzidine (Aldrich), 

50mL TRIS-HCI at 7.6 pH and 50f.LL of3.0% hydrogen peroxide, and subsequently 

immersed in and washed with tap water. The slides were then run through a dehydration 

series in the following order: dH20, 50% ethanol (EtOH), 70% EtOH, 95% EtOH, 100% 

EtOH, I 00% EtOH and a series of four xylenes. Lastly, the slides were coverslipped 

using Pro-Texx mounting medium (Scientific Products). 

Immunocytochemical assays were used to test for the presence and abundance of four 

protein markers: glucocorticoid receptor (GR), nuclear factor kappa B (NFKB), Signal 

Tranducer and Activator of Transcription 5B (STAT 5B) and Inhibitor KB<X (IKBa). 

Polyclonal rabbit IgG antibodies (Santa Cruz Biotechnology) directed against these four 

protein antigens were generated in a rabbit against a 17-21 amino acid length peptide 

corresponding to the amino or carboxyl terminus. Prior to performing 

immunocytochemical assays, we validated antibody specificity by immunoabsorption. 

To test for antibody specificity, working stock solutions of anti-NFKB p65 (4 flg/mL), 

anti-IKB<X (2f.lg/mL), anti-STAT 5B (2f.lg/ml) and anti-GR (4f.Lg/mL) were incubated 

with their respective peptide antigens for 24 hours at 4°C at a ratio of I: 10 (antibody to 

antigen on a mass basis), as recommended by the supplier. After the incubation period, 

the absorbed antibody solution along with a negative control solution consisting of 

PBS/0.02% BSA and of the respective working stock antibody were run through an ICC 

using slides spotted with log phase Nb2 cells. We were able to confirm the specificity of 
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the antibody through the absence of staining in cells treated with the absorbed antibody 

solutions. 

2.7 TDT-Mediated dUTP-Biotin Nick End-Labeling (TUNEL) Method 

22 

The TUNEL method was used as a qualitative confirmation of DEX-induced apoptosis. 

Fischer Superfrost/Plus slides spotted with cells from the DMSO (control) and DEX 

treated wells of cytolytic assays were used for TUNEL assays. An apoptosis detection kit 

obtained from Trevigen was used for all TUNEL assays, and the following solutions were 

used from the kit: I OX TdT Labeling Buffer, I OX Stop Buffer, Tdt dNTP, Tdt , SOX 

Co
2
+, Strepavidin Horseradish Peroxidase (Strep-HRP) and Diaminobenzidine (DAB) 

staining solution. After each treatment and subsequent incubation, the slides were 

washed with at least 10m! ofO.OIM PBS. 

First, the slides were hydrated in 0.0 I M PBS for ten minutes. Next, the cells were 

permeabilized using the detergent Cytopore (Trevigen) for thirty minutes. The slides 

were then subjected to five minutes of peroxidase quenching in a coplin jar at room 

temperature. The peroxidase solution consisted of3.3ml30% H202 and 47.7mL ddH20 

to give a solution of 2% H202. I X labeling buffer was then applied to each circle to 

equilibrate the cells to the buffer solution. Then the buffer was removed with filter paper 

and 18)-lL of labeling mix was applied to each spot. The labeling mix was prepared as 

follows: I )lL Tdt, I )lL Tdt dNTP, I )lL Co
2
+ and 50)-lL of I X labeling buffer prepared for 

every two spots. After applying the labeling mix, slides were placed in a petri dish lined 
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with moist filter paper. The petri dish containing the slide was then placed in a 37°C, 

humidified incubator with an atmosphere composed of 5% C02/95% room air for one 

hour. After one hour the slides were placed in a IX Stop Buffer solution (5mL lOX Stop 

Buffer+ 45ml ddH20) for five minutes. Next, the slides were treated with Strep-HRP 

and allowed to incubate for ten minutes at room temperature. The slides were then 

placed in a DAB staining solution for ten minutes and thereafter washed with tap water in 

a coplin jar. Lastly, the slides were run through a dehydration series in the following 

sequence dH20, 50% ethanol (EtOH), 70% EtOH, 95% EtOH, 100% EtOH, I 00% EtOH 

and four xylenes, and coverslipped using Pro-Texx mounting medium. 

2.8 Statistical Analysis 

The SigmaS tat 2.0 computer program for Windows was used to statistically analyze raw 

data from mitogenic and cytolytic assays. Raw data obtained from cell counts was 

entered into a spreadsheet, subjected to normality and equal variance tests, and one-way 

analysis of variance (ANOVA) (a minimum of three individual assays (n=3) run at 

different times were used for statistical analysis). For the data with a p<0.05 a Tukey test 

was run, which involves a multiple pairwise comparison of the generated means. The 

means calculated from each treatment and each cell line were then used to create graphs 

using SigmaPlot 2000. The error bars on the graphs (Figures 2-5) represent the standard 

error of the mean (SEM) for a given treatment. 
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2.9 Photomicrography 

Photomicrographs were taken of the TUNEL and ICC assays using a Nikon Polaroid 

camera with a landpack attachment mounted on a Nikon Optiphot microscope. Color 

polaroid type 669 film was used at SOX magnification. A representative field of cells was 

photographed from each spot on each slide. The photographs were then developed and 

scanned into the Corel Photo-Paint 8.0 computer program. 
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CHAPTER THREE 

RESULTS 

3.1 Nb2 Lymphoma Cell Morphology 

Figure I represents Nb2 cells stained with Wright's Geimsa stain and illustrates the 

differences between the four Nb2 lines studied. Distinct morphological differences are 

clearly evident between the PRL-dependent and PRL-independent Nb2 lines. The SF and 

D5 cell lines appear to be larger and more dynamic. They also have numerous 

cytoplasmic projections, which are not seen as frequently in the PRL-dependent lines. 

The wild-type (U-17) and Nb2- l l lines display a smaller, more rounded appearance and 

they lack the dynamic appearance of the PRL-independent lines. Even though there are 

discrete differences in morphology between the PRL-dependent and -independent lines, 

all four cell lines display the high nucleus to cytoplasm ratio typical of neoplastic 

lymphoma cells (Fleming, et a!., 1982). 

3.2 Synchronized Nb2 Cell Responsiveness to 72-Hour PRL ± DEX Treatment 

(Mitogenic Assay) 

Figure 2 shows the mitogenic responses of the Nb2-11 and U-17 sublines after 

synchronization in Gl  phase, plating at 1 X 105 cells/mL in SYN, and incubation for 72 

hours under the following conditions: no hormone (control), PRL (lng/mL), DEX 

25 
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(100nM), and PRL ( l ng/mL) ± DEX (IOOnM). In the absence ofPRL and DEX, there 

was little or no increase in cell number above the plating concentration. There was a 

significant increase in cell number for both lines after treatment with PRL illustrating the 

dependence of these sublines upon PRL for mitogenesis. The magnitude of the response 

to PRL was much greater for the Nb2-11 line, which showed a 13-fold increase in cell 

number compared to a 4.3-fold increase for the U-17 line. Co-incubation ofPRL + DEX 

resulted in a significant inhibition of mitogenesis in both sub lines. 

Figure 3 illustrates the mitogenic assay results for the SF and D5 lines. Both sublines 

exhibited pronounced hormone-independent proliferation after 72 hours with the SF cell 

concentration increasing almost 19-fold and D5 cells increasing by almost 16-fold above 

the plating concentration. Incubation with PRL resulted in no further significant increase 

in cell concentration of either cell line. Incubation with DEX produced no significant 

effect in either cell line in the presence or absence of PRL. However, it is noteworthy to 

mention that the number of SF cells incubated with DEX in the absence ofPRL was 

about half that of the SF cells in the control group. 

3.3 Log Phase Nb2 Cell Responsiveness to 24-Hour Treatment with DEX ± PRL 
(Cytolytic Assay) 

Figure 4 illustrates similar cytolytic effects of DEX ± PRL for the U-17 and Nb2-11 

lines. Both lines showed an increase in the percentage of cell death after being subjected 
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to a 24-hour treatment with DEX (I OOnM). The U-17 sub line exhibited a 2.3-fold 

increase in the percentage of dead cells after DEX treatment, whereas the Nb2- l l sub line 

exhibited a 3.6-fold increase in the percentage of dead cells under the same conditions. 

Co-incubation of DEX with l ng/mL PRL blocked DEX-induced cytolysis/apoptosis both 

cell lines. 

Figure 5 shows the functional responses of the SF and D5 lines after a 24-hour treatment 

with DEX ± PRL. The SF and D5 lines exhibited no significant change in cell death 

percentages in response to DEX, indicating that the cells are resistant to DEX-induced 

cytolysis/apoptosis. Co-incubation of DEX with I ng/mL PRL had no significant effects. 

The cytolytic data collected for the D5 subline was split into two subsets ("D5" and 

"Resurrected D5") and analyzed separately. The D5 cells were split into two subsets due 

to the appearance of different functional behavior between batches of cells that had been 

cultured for more than two weeks called "D5" and those cultured less than two weeks 

post-resurrection from -70°C called "resurrected D5". Although statistical analysis 

revealed no significant differences in the treatments for the "resurrected D5" cells, these 

cells appeared to be functionally different from those 'perpetuated for over two weeks 

("D5"). The resurrected cells have a much higher basal cell death percentage than the 

latter, and they appear to have some sensitivity to DEX-induced cytolysis, as indicated by 

a 23.9 %increase in cell death percentage from the control death percentage. In addition, 
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the PRL appears to inhibit the cytolytic effects ofDEX in the newly resurrected cells, as 

indicated by death percentages comparable to the control. 

3.4 TUNEL Method Performed on Control (DMSO) and 24- Hour DEX Treated 

Cells 

Figure 6 is a photomicrograph of the representative TUNEL staining observed in the 

control and DEX treatments of cytolytic assays for the Nb2-11 and U-17 cell lines. In 

both cell lines, DEX exposure increases TUNEL labeling confirming that DEX-induced 

cytolysis reflects apoptosis, which is consistent with previous reports from this laboratory 

(Fletcher-Chiappini, et al., 1993; LaVoie and Witorsch 1995; Gaunzon 1998; Patel 1999; 

Rebano 1999). In contrast to that observed for the Nb2-11 and U-17, DEX failed to 

increase TUNEL labeling in the SF and DS lines (Figure 7) consistent with the cytolytic 

assay results. 

3.5 Immuncytochemical Assays Performed on Log Phase Nb2 Cells 

Figures 8 through 12 are photomicrographs taken of the representative staining produced 

for the control (vehicle 0.1% BSA) and each marker (NFKB, IKBa, STAT Sb, and GR) in 

all four cell lines. These figures indicate no striking differences in location or intensity of 

staining between any of the markers among the four lines. 
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D5 SF 

Nb2-11 U-17 

FIGURE I. Wright's Geimsa stain applied to log phase Nb2 cells. Morphological differences between 
PRL-dt:pendent (Nb2-11 and U-17) and -independent (05 and SF) sublines are illustrated 
above (80X). 
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FIGURE 2. Effect ofDEX +/- PRL on concentration ofNb2-11 and U-17 cells. 
- Both cell 1ines show significant increase (p<0.05, n=5) in cell 

concentration after 72-hour PRL (lng/mL) treatment. PRL-induced 
mitogenesis was prevented by co-incubation with DEX ( 1 OOnM). 
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FIGURE 3. Effect DEX +/- PRL on concentration of SF (n=5) and D5 (n=4) cells. 
No significant differences (p>0.05) were found between any of the 
treatments. However, 72-hour DEX treatment appears to inhibit 
mitogenesis in the SF line. 
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FIGURE 4. Effect of DEX +/- PRL on viability ofNb2-l l and U-17 cells. 
Both cell lines show significant increase (p<0.05, n=5) in cytolysis 
after 24-hour DEX (I OOnM) treatment. DEX-induced cytolysis 
is inhibited by co-incubation ofpRL (lng/mL) with l OOnM DEX. 
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FIGURE 5. Effect of DEX +I- PRL on concentration of SF (n=5), D5 (n=4), and 
resurrected D5 (n=3) cells. No significant increases (p>0.05) were 
found for any of the cell groups. However, D5 resurrected group 
appeared to respond to 24-hour DEX treatment, and appeared to exhibit 
inhibition of cytolysis when co-incubated with PRL and DEX. 
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FIGURE 6. Both sublines show increased labeling of cells after 24-hour DEX exposure 
consistent with DEX-induced apoptosis as measured by trypan blue 
exclusion (80X). 
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FIGURE 7. TUNEL method applied to cells exposed to 24-hour DMSO (control) and DEX 

treatments. Both sub lines show little evidence of staining consistent with 
cytolytic assay results as measured by trypan blue exclusion (80X). 
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SF 

Nb2-11 U-17 

FIGURE 8. Negative immunocytochemical control treatments of log phase Nb2 cells illustrate 
an absence of staining when cells are treated with 0.1% BSA instead of primary 
antibody (SOX). 
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FIGURE 9. Immunocytochemical staining for NFkappaB
'
using a rabbit polyclonal IgG anitbody 

at 4uglmL. The pictures illustrate comparable patterns of staining in all four cell 
sub lines (80X). 
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FIGURE 10. Immunocytochemical staining for the GR using a rabbit polyclonallgG antibody at 
4uglmL. The photomicrographs illustrate comparable staining patterns for the GR 
in all. four sublines (SOX). 
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FIGURE 11. lmmunocytochemical staining for IkappaBalpha using a rabbit polyclonal lgG 

antibody at 2ug!mL. The photomicrographs illustrate comparable staining for 
lkappaBalpha in all four sublines(80X). 
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FIGURE 12. Immunocytochemical staining'for STAT5B using a rabbit polyclonal IgG 
antibody at 2ug/mL. The photomicrographs illustrate comparable staining patterns 
for STAT5B in aU four sublines (SOX). 
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CHAPTER FOUR 

DISCUSSION 

As stated earlier, this investigation had several objectives consistent with our overall goal 

of gaining insight concerning the signaling involved in hormonal control of mitogenesis 

and apoptosis ofNb2 lymphoma cells. First, we wanted to functionally characterize the 

hormonal control of mitogenesis and apoptosis using four Nb2 lymphoma cell sub lines as 

models (U-17, Nb2- l l ,  SFJCDI, and D5). Secondly, we hoped to determine whether any 

differences in expression were demonstrable by ICC ofNFKB, IKBa, STAT 5B, and GR. 

This study confirmed and extended previous observations regarding the functionality of 

these Nb2 sublines. There were two basic functional phenotypes exemplified by their 

mitogenic response, PRL-dependent (Nb2-11 and U-17) and PRL-independent (SF JCD 1 

and D5). Furthermore, the former were DEX and PRL sensitive, exhibiting a 

cytolytic/apoptotic response to DEX in the absence ofPRL, an inhibition of DEX­

induced cytolysis/apoptosis in response to PRL treatment, and an anti-proliferative 

response when DEX is co-incubated with PRL. These data are entirely consistent with 

previous studies in Nb2-11-related sublines ( Fletcher-Chiappini, et al., 1993; LaVoie and 

Witorsch 1995; Gaunzon 1998; Patel 1999; Rebano 1999). To the best of our knowledge 
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the data on DEX responsiveness and anti-apoptotic effects of PRL for the U-17 sub line 

have not been previously reported. 

4 2  

I n  contrast t o  the U-17 and Nb2- l l ,  the SF (SFJCDl) and D5 sublines proliferated 

robustly in the absence ofPRL and in our hands, appeared to be PRL-insensitive. 

Previously, Gout et al. documented that the SF subline exhibited a slight sensitivity to 

PRL and the D5 was more sensitive than the SF (Gout 1987; Gout, et al., 1994; Gout, et 

al., 1997) . The reason for the discrepancy between Gout's findings and those in our 

laboratory is unknown. Perhaps the differences are methodological or are due to the 

adaptive nature of cancer cells themselves. Minute differences may exist between 

different batches of cells that are as of yet undocumented. In contrast to PRL-dependent 

cells, the SF and D5 sublines exhibited DEX-resistance. No significant DEX-induced 

anti-proliferation was observed nor was there any indication ofDEX-induced 

cytolysis/apoptosis in either line. PRL-independent proliferation is well established for 

these two lines (Witorsch, et al., 1993; Gout 1987; Gout, et al. 1994; Gout, et al., 1997); 

however, the lack of DEX sensitivity exhibited by the SF is inconsistent with a previous 

report from this laboratory. Witorsch et al. (1993) reported that DEX significantly 

inhibited PRL-independent mitogenesis of SF cells. It is noteworthy, however, that while 

no statistically significant effect ofDEX on SF cell proliferation was demonstrable, the 

mean number of cells found in SF cells exposed to DEX for 72 hours was about 50% of 

the control. The lack of statistical significance under these conditions could reflect a 

"false negative" or type II or beta error resulting from an imprecision in the assay due to 
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inadequate sample size (n=5) or high variability in the results. Alternatively, the lack of 

statistical significance could indicate a change in DEX-sensitivity over time (i.e. current 

batch of SF cells versus those examined previously). As shown in other work in this 

laboratory (discussed below, Gannon 2000) hormone sensitivity of the Nb2 lymphoma 

can change with long-term culturing of the cells. 

Cytolytic assay data suggest a change occurs over a short period of time after resurrection 

in the D5 sub line. In our previous experience, no such changes have been observed after 

resurrection in other lines. Freshly resurrected D5 cells appeared to behave like PRL­

dependent cells exhibiting sensitivity to DEX-induced cytolysis and anti-apoptosis in 

response to PRL treatment, in addition to high basal cell death. While it is noteworthy 

that no statistical significance was observed (again reflecting a possible type II error; 

n=3), this apparent difference shortly after resurrection, as compared to behavior after 

two weeks of culture post-resurrection, could suggest some transformation that this 

sub line might undergo, or that this sub line is unusually compromised by freezing or 

needs time to assume its full potential after resurrection. In support of the possibility that 

these cells may have undergone transformation, Buckley et a!. demonstrated that treating 

the SF line with a differentiating agent (sodium butyrate) results in a transient reversion 

back to PRL-dependence and a decrease in the level ofpim-1 expressed, and most 

importantly, the SF line becomes sensitive to DEX-induced apoptosis (Buckley, et a!., 

1997). Buckley's work suggests that PRL-dependence and DEX sensitivity are acquired 

through cell dedifferentiation, which may be what we are observing in the D5 line as 
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evidenced by their DEX responsiveness shortly after resurrection and their loss of 

responsiveness after approximately two weeks. 
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Cancer cells are known to change their phenotype with time, which usually correlates 

with malignant progression (Gout, et a!., 1994). Phenotypic changes include the loss of 

growth requirements of specific hormones or growth factors, increases in growth rate, 

development of drug resistance, tissue invasiveness, metastatic ability, and drug 

resistance (Nowell 1986; Nicolson 1987). It has been specifically documented that 

lymphoid cancers that are initially responsive to GC treatment develop a resistance to 

GC's after prolonged treatment (Feinman, et a!., 1999; Klumper, et a!., 1995). We may 

be witnessing some of these phenotypic changes in the D5 line after resurrection. Gout et 

al. documented the change in growth and size over a 2.3-year period of an Nb2 

lymphoma line (called Nb2-PRA) after splitting the line into two independent cultures 

(Gout, et a!., 1994). Initially both cultures showed a gradual decrease in doubling time. 

Then one of the cultures spontaneously increased its doubling time in conjunction with 

the appearance of substantially larger cells, which eventually became the predominant 

cell type. In contrast, this larger cell type never developed in the other culture and the 

doubling time eventually stabilized at 13 hours (Gout, et a!., 1994). Although the 

changes we witnessed in the D5 line resulted inDEX resistance, the cells were not 

cultured with DEX, and therefore their resistance to DEX-induced apoptosis cannot be 

attributed to prolonged exposure to DEX. Perhaps like the changes in the Nb2-PRA line, 

the D5 is undergoing a non-induced change in phenotype related to the progression of 
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that particular type of cancer cell. This phenotypic change consequently affords the D5 

line with DEX resistance. The patterns observed in D5 and resurrected D5 (Figure 5) is 

an extremely rapid occurrence (less than two weeks), suggesting that cancer cells have 

the ability to change their functional behavior very rapidly. 

The current investigation was paralleled by another investigation in the laboratory that 

studied the effects of long-term culture on an Nb2-ll line, similar to the investigation 

Gout et a!. undertook with the Nb2-PRA line. Unlike the Gout's investigation, no 

obvious morphological changes were documented in the cells. However, phenotypically 

an Nb2-11 sub line cultured for a year or more (named L TI for long-term incubation) 

became autonomous and less sensitive to DEX-induced apoptosis, suggesting that with 

time the Nb2-11 is undergoing malignant progression with long-term culture. This study 

also revealed a relatively rapid transformation of cells deprived of mitogen (FCS) (named 

PI for prolactin-independent). In addition to a loss ofDEX sensitivity, both the LTI and 

PI exhibited hormone-independent proliferation (Gannon 2000). Thus, the sublines 

recently generated in our laboratory are similar functionally to the SF and D5 lines. 

In contrast to the similar cytolytic assay results for the Nb2-11 and U-17 lines (Figure 4), 

the mitogenic assay results showed some variation in' PRL responsiveness between the 

two lines. The Nb2-11 line gave a much more robust response to PRL producing a 13-

fold increase in growth from baseline, while the U-17 only showed a 4.3-fold increase in 

cell number (Figure 2). In fact, the Nb2-11 line has been found to have a faster growth 
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rate when perpetuated in culture than the U-17 (unpublished results). Gout et a!. 

documented a 14-hour doubling time for the Nb2- l l (Gout, et a!., 1994; Gout, et a!., 

1997), which is in agreement with our records. This is significantly faster than the 17-24-

hour doubling time for the U-17 (unpublished results), which may account for the more 

robust response of the Nb2-11 to PRL. 

The inhibition of cell proliferation by DEX observed in the PRL exposed Nb2-l l and U-

17 sublines, and possibly the autonomous SF subline in the mitogenic assay, may be due 

to cell cycle control mechanisms. King and Cidlowski found that glucocorticoid 

treatment of lymphoid cell lines expressing markers of immature thymocytes results in 

G I arrest, and in most cases, growth inhibition is followed by cell death (King and 

Cidlowski 1998). Perhaps the observed inhibition of mitogenesis is actually an arrest in 

the G I phase of the cell cycle. 

In addition to the previously documented phenotypic differences among the Nb2 sublines 

supported by these studies, certain other functional and genotypic characteristics are 

worth noting. The U-17, Nb2-l l ,  and SF lines all induce the growth of tumors when 

implanted subcutaneously in Noble rats, but only the Nb2-11 and SF lines metastasize to 

other sites in the animal (Gout, et a!., 1994). Karyotyping of these three lines has shown 

the U-17 and Nb2- l l lines to be identical with both displaying five additional changes 

with respect to the normal Noble rat karyotype, and the SF line has six additional changes 

with respect to the U-17 karyotype (Horsman, et a!., 1991). The identical nature of the 
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U-17 and Nb2-l l makes the differences in functional behavior between these two lines 

all the more intriguing. 
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The DS line has not been studied as extensively as the U-17, Nb2-ll or SF lines. The 

functional results obtained from our investigation suggest that the DS is probably closer 

to the SF in karyotype than the parent line. However, karyotyping of the DS line has 

revealed that this line has no greater than two additional chromosomal changes compared 

to the parent line (Gout, et al., 1997). These two or fewer changes then must be 

responsible for a radically different phenotype compared to the parent line. The 

chromosomal and subsequent behavioral alterations associated with malignant 

progression in the Nb2 line suggest that the resistance to treatment seen in the SF and DS 

lines is probably attributable to many cooperative changes. 

The phenotypic differences observed when comparing the U-17 and Nb2-ll to the DS 

and SF may reflect differences in intracellular signaling. While numerous signals could 

be implicated in self-proliferation and resistance to DEX-induced cytolysis/apoptosis this 

study considered the GR, STAT SB, NFKB, and IKBa. As reviewed in the introduction, 

the GR is critical to initiate DEX-induced apoptosis. STAT SB, a component of the 

JAK/STAT cascade mediates PRL-induced effects. lKBa, which sequesters NFKB in the 

cytoplasm of the cell, is involved in GC-mediated effects and prevents NFKB from 

translocating to the nucleus (Hettman, et al., 1999; Whiteside and Israel 1997) making it 

a pro-apoptotic factor. One would suspect, therefore, that a self-proliferating, DEX-
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resistant cell line might exhibit increased expression of STAT 5B and NFKB, and reduced 

expression of the GR and IKBa, or a combination thereof relative to the Nb2-11 and/or U-

17 cells. In support of this hypothesis it has been documented that STAT 5 represses the 

GC response (Pfiztner, et al., 1998), supporting the hypothesis that increased STAT 5B 

could prevent GC-induced apoptosis. However, our preliminary ICC studies reveal no 

striking differences in the immunostaining of the four signals of interest among the four 

Nb2 sublines. These negative findings must be interpreted cautiously. As it is currently 

performed, our ICC methodology may be inadequate to detect changes in the expression 

of proteins. Our current method is designed to produce maximal staining intensity, and 

this may be insensitive to modest changes in signal expression. Hence, we are only able 

to differentiate between cells that express antigen and those that do not (Gaunzon 1998; 

Badarinath 1999; Patel 1999; Rebano 1999). In other words, we might detect a change in 

the proportion of cells stained under varying conditions. However, the assay will have to 

be modified in order to detect changes in the levels of antigen expression (i.e. staining 

intensity differences on an individual cell basis). This requires titering of the primary 

antibody to the dose-response curve relating protein content to staining intensity. Such 

modification in ICC methodology is currently under development in our laboratory. 

In addition, changes in antigen expression may not be a function of the physiologic 

phenotype, but of the physiologic status of the cells (i.e. the state of hormonal 

manipulation). In the current ICC studies, assays are performed on cells in log phase 

growth. The Nb2-11 and U-17 cells proliferate in response to lactogenic medium 
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(medium supplemented with FCS), whereas the SF and D5 are self-proliferating sublines. 

Changes in signal expression may, therefore, require such changes as removal of mitogen 

or exposure to DEX prior to the ICC assay. 

Alternatively, other signals may be implicated in the phenotypic differences or the 

mechanisms involved may be of increased complexity. It has been previously observed 

that the SF line has the ability to increase glutathione production in response to oxidative 

stress (Meyer, et a!., 1998). Therefore, perhaps pretreatment with DEX ± PRL may be 

required to produce noticeable changes in the concentrations of NFKB, IKBa, STAT 5b, 

and the GR. It been reported that levels of cysteine and glutathione in a human T cell 

line can modulate the activity ofNFKB (Gout, et a!. 1994). L-cystine or rather its 

reduced form cysteine is an essential amino acid required for mammalian lymphocytes, 

and a number of malignant human and animal cell lines of lymphoid origin, which lack 

the ability to synthesize the amino acid (Inglhart, et a!., 1977; Ishii, et a!., 1981 ). The 

Nb2-l l ,  U-17, and D5 lines must be grown in media supplemented with 2-

mercaptoethanol (2-ME) in order to synthesize cysteine (Gout, et a!. 1997). On the 

contrary, the SF line has an enhanced cystine uptake capability affording it with 2-ME 

independence (Gout, et a!. 1997). When the cells are subjected to an experiment 

involving DEX ± PRL treatment, they are first removed from their respective growth 

media and placed in serum-free, chemically defined media devoid of 2-ME. The SF is 

unaffected by the change in media. However, the Nb2-ll ,  U-17, and D5 may undergo 

changes in NFKB concentration due to a change in media; the activity ofNFKB 
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apparently depends upon optimal levels of cysteine and glutathione (Gout, et a!., 1997). 

Placing the U-17, Nb2-11, and D5 cells in media devoid of 2-ME would inhibit cysteine 

production, which would in tum lower NFKB levels and make the cells more susceptible 

to DEX-induced apoptosis. This explanation is consistent with the functional response of 

the U-17 and Nb2-11, but it is inconsistent with the DEX-insensitivity we see in the D5 

line. Therefore, although cysteine levels may play a role in the sensitivity to DEX­

induced apoptosis, cysteine levels alone do not dictate functional behavior. 

It has been reported that DEX-insensitive thymocytes possess fully functional GRs, and 

the molecular weight and abundance of the receptor does not change after DEX 

treatment, indicating that the GR is neither down-regulated nor mutated (Oldenburg, et 

a!., 1997). Interestingly though, treatment with non-synthetic glucocorticoids has been 

reported to cause down-regulation of the GR for up to 72 hours after treatment 

(Rosewicz, et a!., 1988). The reason for this discrepancy is unknown. The 

immunocytochemical staining intensity and concentration of the GR was similar for all 

four lines, but again, the ICC studies were performed on log phase cells. Therefore, 

future studies should involve comparison of log phase versus DEX treated cells in order 

to ascertain the integrity and concentration of the GR, and to confirm the studies 

performed by Oldenburg. 

In the SF line p21 ras and mitogen activated protein kinase (MAPK) are both constitutively 

active, but in hormone-dependent cultures such as the Nb2-ll ,  PRL is necessary to 
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activate this signaling pathway in conjunction with the JAK2/ST AT cascade (Buckley, et 

a!., 1997). This suggests that the enhanced Ras and MAPK expression found in SF cells 

may be responsible for PRL-independence and cooperative in preventing apoptosis 

(Buckley, et a!., 1997). 

In conclusion, our findings indicate that major differences in functional behavior exist 

between the PRL-dependent and PRL-independent lines, as evidenced by cytolytic and 

mitogenic assay results. These differences in behavior are probably not attributable to 

any one protein signal or chromosomal change, but are most likely due to progressive 

changes in phenotype that accompany malignant progression (Nowell 1986). Future 

studies will involve a more focused immunocytochemical investigation of protein 

markers. 
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